Extensions 1→N→G→Q→1 with N=C2 and Q=C22⋊SD16

Direct product G=N×Q with N=C2 and Q=C22⋊SD16
dρLabelID
C2×C22⋊SD1632C2xC2^2:SD16128,1729


Non-split extensions G=N.Q with N=C2 and Q=C22⋊SD16
extensionφ:Q→Aut NdρLabelID
C2.1(C22⋊SD16) = C23.35D8central extension (φ=1)32C2.1(C2^2:SD16)128,518
C2.2(C22⋊SD16) = C24.159D4central extension (φ=1)64C2.2(C2^2:SD16)128,585
C2.3(C22⋊SD16) = D4⋊(C4⋊C4)central extension (φ=1)64C2.3(C2^2:SD16)128,596
C2.4(C22⋊SD16) = C24.160D4central extension (φ=1)64C2.4(C2^2:SD16)128,604
C2.5(C22⋊SD16) = (C2×SD16)⋊14C4central extension (φ=1)64C2.5(C2^2:SD16)128,609
C2.6(C22⋊SD16) = C232SD16central stem extension (φ=1)32C2.6(C2^2:SD16)128,333
C2.7(C22⋊SD16) = Q8⋊D4⋊C2central stem extension (φ=1)32C2.7(C2^2:SD16)128,336
C2.8(C22⋊SD16) = C24.16D4central stem extension (φ=1)32C2.8(C2^2:SD16)128,345
C2.9(C22⋊SD16) = C4⋊C4.19D4central stem extension (φ=1)32C2.9(C2^2:SD16)128,348
C2.10(C22⋊SD16) = D42SD16central stem extension (φ=1)32C2.10(C2^2:SD16)128,361
C2.11(C22⋊SD16) = Q82SD16central stem extension (φ=1)64C2.11(C2^2:SD16)128,363
C2.12(C22⋊SD16) = D4.SD16central stem extension (φ=1)64C2.12(C2^2:SD16)128,367
C2.13(C22⋊SD16) = D4.3Q16central stem extension (φ=1)64C2.13(C2^2:SD16)128,369
C2.14(C22⋊SD16) = D4.D8central stem extension (φ=1)32C2.14(C2^2:SD16)128,371
C2.15(C22⋊SD16) = Q83SD16central stem extension (φ=1)64C2.15(C2^2:SD16)128,374
C2.16(C22⋊SD16) = Q84SD16central stem extension (φ=1)64C2.16(C2^2:SD16)128,383
C2.17(C22⋊SD16) = D44SD16central stem extension (φ=1)64C2.17(C2^2:SD16)128,386
C2.18(C22⋊SD16) = C233SD16central stem extension (φ=1)64C2.18(C2^2:SD16)128,732
C2.19(C22⋊SD16) = (C2×C8)⋊20D4central stem extension (φ=1)64C2.19(C2^2:SD16)128,746
C2.20(C22⋊SD16) = (C2×Q8)⋊Q8central stem extension (φ=1)128C2.20(C2^2:SD16)128,756
C2.21(C22⋊SD16) = C24.84D4central stem extension (φ=1)64C2.21(C2^2:SD16)128,766
C2.22(C22⋊SD16) = C4⋊C47D4central stem extension (φ=1)64C2.22(C2^2:SD16)128,773
C2.23(C22⋊SD16) = (C2×C8)⋊Q8central stem extension (φ=1)128C2.23(C2^2:SD16)128,790

׿
×
𝔽